以前上 Minnesota macro 的时候做过几道跟校准(calibration)有关的习题,班门弄斧两句。这个东西其实一开始是 Ed Prescott 搞出来的,简单来讲就是用现实中的数据(矩)来拟合理论上(parsimonious and misspecified)的模型,从而获得一些经济学上的 insights。
Calibration is estimation, estimation is calibration... If calibration is the setting of the numericalvalues of model parameters relative to the criterion of an ability to replicate a base casedata set as a model solution, and estimation is the use of a goodness of fit criterion inthe selection of numerical values of model parameters, the two procedures are closelyrelated. In both cases a selection of model parameter values which is thought to bereasonable (or best) relative to some criterion applied to data is involved. In one sense,both procedures lead to identical outcomes.
(cf. Christina Dawkins, T.N. Srinivasan, John Whalley, "Chapter 58 - Calibration," In: James J. Heckman and Edward Leamer, Editor(s), Handbook of Econometrics, Elsevier, 2001, Volume 5, Pages 3653-3703.) ~~~~~~~~~~~~~~~~~
(Source: Heller-Hurwicz Economics Institute)
相关历史信息和更详细的科普可参见 Kevin D. Hoover 的这篇文章:Quantitative Evaluation of Idealized Models in the New Classical Macroeconomics。
热心网民1小时前0条评论
0赞0踩
calibration 就是指从模型外选取参数的技巧。
很不严格地说,宏观模型可以用一个(从最优化问题中推导出来的)结构方程组
来描述。其中是我们关心的宏观变量(比如 t 期的产量,消费,投资,…);是一些政策和外生变量(比如税率,政府支出和全要素生产率 TFP),是一些具有经济含义的参数,决定了宏观变量是如何根据的变化而变化。